Building a Web Based Search Application for SiLK Data

Author: Cayler Miley, Undergraduate; Researchers: Cayler Miley, Daniel Lopez; Mentors: Jeff Springer, Nancy LaTourette
Computer Science and Engineering Department; University of Nevada, Reno

RESULTS

ABSTRACT METHODS

Monitoring a large-scale network requires a robust application to query enormous * The server side web service (referred to as the “back end”) uses a custom Python
amounts of data and present search results with readability for security analysis.

Building an application to find and report on security events from many network

gates presents problems involving efficiently querying massive databases and .
presenting lists of IP addresses, ports, and other network data in a way that allows

the application user to effectively process security events with a high threat level in

real time.

module to operate on the SiLK database and manipulate the data returned from a
qguery. The python framework Flask is used for URL management.

Flask routes URL strings to python functions allowing a user to activate python
scripts from a web browser with access to the domain name of the server
containing the back end. We used this to easily pass parameters in a URL to the
python functions and allow all of the computation required by SiLK to complete
on the server side.

INTRO DUCTI O N * During implementation, threading and forking solutions were used and tested for

efficiency and speed of computation. The time taken for searching the SiLK
database was large enough that a status function was required so that the user
could check if their query was still working on the database. Once finished, the
data is returned.

:
S
2
E
%
®

HTML/CSS/JS USER

. Flow Records Flow Searches - Python/Flask

Current Implementation of the Coyote Architecture.

* The project arose to monitor IP conversations on a complex network.

Coyote IP Search

* We set up a web service based on “a collection of traffic analysis tools developed
by the CERT Network Situational Awareness Team (CERT NetSA) to facilitate
security analysis of large networks” referred to as a SiLK database for tracking —— _

netflow information. * The GUI (referred to as the “front end”) was implemented using HTML, CSS, and e rraron A T Tramos A st “‘

124.124.121.24 2015-12-24 02:22:49.565000 A Few Minutes Ago

- Python scripting and a microframework called Flask helped complete a server side Javascript. To better present the data, the DataTables plugin was used for -

setup where a URL could be called to query the SiLK database. graphical representation of the data.

* The user interface accesses Flask through a URL in a web browser (Google
101.152.23.197 8340782e-0e92-3a31-9c2d-d4d76d1da87d
Chrome, Mozilla Firefox, etc.).

GET STATUS

2015-12-24 02:22:49.565000 A Few Seconds Ago

Searched For In Timeframe At

8340782e-0e92-3a31-9c2d-d4d76d1da87d

Showing 1 to 2 of 2 entries Previous 1 ’ Next

* A GUI was needed to present the data from the SiLK database for readability and * The Ajax framework allows the user to dynamically recompose the web page

ease of use for end users. To achieve this we used a single page web application
that accepted JavaScript Object Notation (JSON) for the results from the web
server.

* These components form a web application that can aptly determine the network

location and time that security events occurred and further research trends in
cyber attacks on the network.

* This application inspired us to create a video presentation to interest local
students in cyber security through explanations of phishing attacks.

based on their new searches to make the application single page. We used this to
limit the need for refreshing the page.

The page is built on Google Material Design Lite (MDL) to make an appealing and
easy to understand interface.

As development continues, we have encountered problems with a way to inform
the user of the status of a large search and to optimize the search process for the
web service.

Source

Show |10 v |entries

IP - Source Port Bytes

Destination IP

Destination Port

Flags

Start Time

Search:

End Time

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

101.152.23.197

60895 840

61177 168

61178 44193

61752 504

61141 840

61140 756

55162 504

55162 336

52747 1512

5565 1596

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

209.19.55.100

50029

50630

50629

56574

65469

65470

65472

65476

58577

45894

SRPA

2015-12-13 07:47:34.043000

2015-12-13 07:49:42.330000

2015-12-13 07:49:42.394000

2015-12-13 07:53:53.551000

2015-12-13 08:02:04.556000

2015-12-13 08:02:04.618000

2015-12-13 08:02:04.737000

2015-12-13 08:02:05.486000

2015-12-13 08:04:09.980000

2015-12-13 08:08:16.240000

2015-12-13 07:47:47.290000

2015-12-13 07:49:42.580000

2015-12-13 07:51:47.291000

2015-12-13 07:53:55.298000

2015-12-13 08:02:19.125000

2015-12-13 08:02:17.184000

2015-12-13 08:02:14.893000

2015-12-13 08:02:18.767000

2015-12-13 08:04:24.496000

2015-12-13 08:08:30.447000

In this presentation, the process of creating an application that can handle large
scale searches for unwanted communication on a network and present the data it
returns is completed through the use of a web service and a browser interface.

Our developmental approach was to use a python framework called Flask to
interface a query from a Graphical User Interface (GUI) to the System for Internet
Level Knowledge (SiLK).

The GUI offers an easy way for users to search on all of the conversations a
particular set of IP addresses has had during a set time interval and sort through
large sets of data to determine if a security event needs to be created based on
the information provided by the web service.

The process and logical use for an application of this kind offers an excellent way
to interest local students in cyber security, which has resulted in two videos on
the cyber security topics for presentation at local high schools.

The development of the application is still continuing and is scheduled for
production testing in May of 2016.

This material is based upon work supported in part by the National Science Foundation under Grant

No. I1A-1301726.

RESULTS

User interface for the Coyote application.

* Development thus far has resulted in a single page web application that displays
tabular data relevant to network security events, called Coyote.

CONCLUSIONS

* The single page GUI uses a web form to route data to Flask which can then run a
python script to query the SiLK database. The data response on the query then .

)) The Coyote application was developed as a way to monitor network security
populates a table using the DataTables plugin.

events on large-scale networks to prevent and/or respond to attacks on the
* The front end is still under development to include features such as a loading network.
progress bar or icon while the data table loads, accepting universal time intervals
to be re-formatted for a Flask route on the client side, and a table of recent

searches to allow a user to effectively receive previous data without re-running a

* The Coyote application allows for efficient and timely response to events with its
easy to use GUI, fast database searching, and graphical presentation of data.

search. * The single components of the Coyote application offer monitoring a network in

* Both forking and threading solutions were tested but threading produced close to real time when events occur.
significantly faster results on searches of more than 3 IP addresses at a time. Even
so, a status function for the is required as some searches can take minutes.

* The project has not encountered any major overloads in data or crashed due to
user input and data overload, therefore it looks to function as a production level
monitoring application with horizontal scalability to meet the needs of its user
base.

* Each search is uniquely identified by a Globally Unique Identifier to allow users to
not repeat identical searches. This serves as the component for querying the
status of the SiLK database.

* The back end of the application is relatively robust and free of major bugs, thus is
likely ready for production. The front end is still in development with production
testing for the entire application scheduled for May 2016.

Note: All data presented on this poster was anonymized to limit possible security breaches while the
application is under development.

