
Prin%ng:

This poster is 48” wide by 36” high. 
It’s designed to be printed on a 
large-format printer.




Customizing the Content:

The placeholders in this poster are 
formaFed for you. Type in the 
placeholders to add text, or click 
an icon to add a table, chart, 
SmartArt graphic, picture or 
mul%media file.


To add or remove bullet points 
from text, just click the Bullets 
buFon on the Home tab.


If you need more placeholders for 
%tles, content or body text, just 
make a copy of what you need and 
drag it into place. PowerPoint’s 
Smart Guides will help you align it 
with everything else.


Want to use your own pictures 
instead of ours? No problem! Just 
right-click a picture and choose 
Change Picture. Maintain the 
propor%on of pictures as you resize 
by dragging a corner.


Building	a	Web	Based	Search	Application	for	SiLK	Data	
Author:	Cayler	Miley,	Undergraduate;	Researchers:	Cayler	Miley,	Daniel	Lopez;	Mentors:	Jeff	Springer,	Nancy	LaToureBe	

Computer	Science	and	Engineering	Department;	University	of	Nevada,	Reno	
	

ABSTRACT	
Monitoring	a	large-scale	network	requires	a	robust	applicaLon	to	query	enormous	
amounts	of	data	and	present	search	results	with	readability	for	security	analysis.	
Building	an	applicaLon	to	find	and	report	on	security	events	from	many	network	
gates	presents	problems	involving	efficiently	querying	massive	databases	and	
presenLng	lists	of	IP	addresses,	ports,	and	other	network	data	in	a	way	that	allows	
the	applicaLon	user	to	effecLvely	process	security	events	with	a	high	threat	level	in	
real	Lme.		

INTRODUCTION	

•  In	this	presentaLon,	the	process	of	creaLng	an	applicaLon	that	can	handle	large	
scale	searches	for	unwanted	communicaLon	on	a	network	and	present	the	data	it	
returns	is	completed	through	the	use	of	a	web	service	and	a	browser	interface.	

•  Our	developmental	approach	was	to	use	a	python	framework	called	Flask	to	
interface	a	query	from	a	Graphical	User	Interface	(GUI)	to	the	System	for	Internet	
Level	Knowledge	(SiLK).	

•  The	GUI	offers	an	easy	way	for	users	to	search	on	all	of	the	conversaLons	a	
parLcular	set	of	IP	addresses	has	had	during	a	set	Lme	interval	and	sort	through	
large	sets	of	data	to	determine	if	a	security	event	needs	to	be	created	based	on	
the	informaLon	provided	by	the	web	service.	

•  The	process	and	logical	use	for	an	applicaLon	of	this	kind	offers	an	excellent	way	
to	interest	local	students	in	cyber	security,	which	has	resulted	in	two	videos	on	
the	cyber	security	topics	for	presentaLon	at	local	high	schools.	

•  The	development	of	the	applicaLon	is	sLll	conLnuing	and	is	scheduled	for	
producLon	tesLng	in	May	of	2016.	

METHODS	
•  The	server	side	web	service	(referred	to	as	the	“back	end”)	uses	a	custom	Python	

module	to	operate	on	the	SiLK	database	and	manipulate	the	data	returned	from	a	
query.	The	python	framework	Flask	is	used	for	URL	management.	

•  Flask	routes	URL	strings	to	python	funcLons	allowing	a	user	to	acLvate	python	
scripts	from	a	web	browser	with	access	to	the	domain	name	of	the	server	
containing	the	back	end.	We	used	this	to	easily	pass	parameters	in	a	URL	to	the	
python	funcLons	and	allow	all	of	the	computaLon	required	by	SiLK	to	complete	
on	the	server	side.	

•  During	implementaLon,	threading	and	forking	soluLons	were	used	and	tested	for	
efficiency	and	speed	of	computaLon.	The	Lme	taken	for	searching	the	SiLK	
database	was	large	enough	that	a	status	funcLon	was	required	so	that	the	user	
could	check	if	their	query	was	sLll	working	on	the	database.	Once	finished,	the	
data	is	returned.	

•  The	user	interface	accesses	Flask	through	a	URL	in	a	web	browser	(Google	
Chrome,	Mozilla	Firefox,	etc.).	

•  The	GUI	(referred	to	as	the	“front	end”)	was	implemented	using	HTML,	CSS,	and	
Javascript.	To	beBer	present	the	data,	the	DataTables	plugin	was	used	for	
graphical	representaLon	of	the	data.	

•  The	Ajax	framework	allows	the	user	to	dynamically	recompose	the	web	page	
based	on	their	new	searches	to	make	the	applicaLon	single	page.	We	used	this	to	
limit	the	need	for	refreshing	the	page.		

•  The	page	is	built	on	Google	Material	Design	Lite	(MDL)	to	make	an	appealing	and	
easy	to	understand	interface.	

•  As	development	conLnues,	we	have	encountered	problems	with	a	way	to	inform	
the	user	of	the	status	of	a	large	search	and	to	opLmize	the	search	process	for	the	
web	service.		

RESULTS	
•  Development	thus	far	has	resulted	in	a	single	page	web	applicaLon	that	displays	

tabular	data	relevant	to	network	security	events,	called	Coyote.	
•  The	single	page	GUI	uses	a	web	form	to	route	data	to	Flask	which	can	then	run	a	

python	script	to	query	the	SiLK	database.	The	data	response	on	the	query	then	
populates	a	table	using	the	DataTables	plugin.	

•  The	front	end	is	sLll	under	development	to	include	features	such	as	a	loading	
progress	bar	or	icon	while	the	data	table	loads,	accepLng	universal	Lme	intervals	
to	be	re-formaBed	for	a	Flask	route	on	the	client	side,	and	a	table	of	recent	
searches	to	allow	a	user	to	effecLvely	receive	previous	data	without	re-running	a	
search.	

•  Both	forking	and	threading	soluLons	were	tested	but	threading	produced	
significantly	faster	results	on	searches	of	more	than	3	IP	addresses	at	a	Lme.	Even	
so,	a	status	funcLon	for	the	is	required	as	some	searches	can	take	minutes.	

•  Each	search	is	uniquely	idenLfied	by	a	Globally	Unique	IdenLfier	to	allow	users	to	
not	repeat	idenLcal	searches.	This	serves	as	the	component	for	querying	the	
status	of	the	SiLK	database.	

•  The	back	end	of	the	applicaLon	is	relaLvely	robust	and	free	of	major	bugs,	thus	is	
likely	ready	for	producLon.	The	front	end	is	sLll	in	development	with	producLon	
tesLng	for	the	enLre	applicaLon	scheduled	for	May	2016.	

	

RESULTS	

CONCLUSIONS	
•  The	Coyote	applicaLon	was	developed	as	a	way	to	monitor	network	security	

events	on	large-scale	networks	to	prevent	and/or	respond	to	aBacks	on	the	
network.	

•  The	Coyote	applicaLon	allows	for	efficient	and	Lmely	response	to	events	with	its	
easy	to	use	GUI,	fast	database	searching,	and	graphical	presentaLon	of	data.	

•  The	single	components	of	the	Coyote	applicaLon	offer	monitoring	a	network	in	
close	to	real	Lme	when	events	occur.	

•  The	project	has	not	encountered	any	major	overloads	in	data	or	crashed	due	to	
user	input	and	data	overload,	therefore	it	looks	to	funcLon	as	a	producLon	level	
monitoring	applicaLon	with	horizontal	scalability	to	meet	the	needs	of	its	user	
base.	

	

This	material	is	based	upon	work	supported	in	part	by	the	Na6onal	Science	Founda6on	under	Grant	
No.	IIA-1301726.	

Current	ImplementaLon	of	the	Coyote	Architecture.	

User	interface	for	the	Coyote	applicaLon.	

Note:	All	data	presented	on	this	poster	was	anonymized	to	limit	possible	security	breaches	while	the	
applica6on	is	under	development.	

PROCESS	

•  The	project	arose	to	monitor	IP	conversaLons	on	a	complex	network.		

•  We	set	up	a	web	service	based	on	“a	collecLon	of	traffic	analysis	tools	developed	
by	the	CERT	Network	SituaLonal	Awareness	Team	(CERT	NetSA)	to	facilitate	
security	analysis	of	large	networks”	referred	to	as	a	SiLK	database	for	tracking	
neelow	informaLon.	

•  Python	scripLng	and	a	microframework	called	Flask	helped	complete	a	server	side	
setup	where	a	URL	could	be	called	to	query	the	SiLK	database.	

•  A	GUI	was	needed	to	present	the	data	from	the	SiLK	database	for	readability	and	
ease	of	use	for	end	users.	To	achieve	this	we	used	a	single	page	web	applicaLon	
that	accepted	JavaScript	Object	NotaLon	(JSON)	for	the	results	from	the	web	
server.	

•  These	components	form	a	web	applicaLon	that	can	aptly	determine	the	network	
locaLon	and	Lme	that	security	events	occurred	and	further	research	trends	in	
cyber	aBacks	on	the	network.	

•  This	applicaLon	inspired	us	to	create	a	video	presentaLon	to	interest	local	
students	in	cyber	security	through	explanaLons	of	phishing	aBacks.	

	


